Как рассчитать долю от числа

Содержание
  1. Как посчитать долю от общего числа в процентах
  2. Как рассчитать долю в процентном соотношении?
  3. Расчет процента от числа и доли в Excel
  4. Считаем долю от общего числа
  5. Находим процент от числа
  6. Заключение
  7. Калькулятор процентов
  8. Найти процент от числа
  9. Сколько процентов составляет одно число от другого
  10. Прибавить проценты к числу
  11. Вычесть проценты из числа
  12. На сколько процентов одно число больше другого
  13. На сколько процентов одно число меньше другого
  14. Найти 100 процентов
  15. Как посчитать процент от числа
  16. Сколько процентов составляет число от числа
  17. Как посчитать процент от числа и долю в Эксель
  18. Формула расчета доли
  19. 1. Формула расчета доли в процентном отношении
  20. 2. Формула расчета процента от числа
  21. 3. Формула увеличения числа на заданный процент. Сумма с НДС
  22. 4. Формула уменьшения числа на заданный процент
  23. 5. Формула вычисления исходной суммы. Сумма без НДС
  24. 6. Расчет процентов на банковский депозит. Формула расчета простых процентов
  25. 7. Расчет процентов на банковский депозит при начислении процента на процент. Формула расчета сложных процентов
  26. 8. Еще одна формула сложных процентов
  27. 6 способов посчитать проценты от суммы с калькулятором и без – Лайфхакер
  28. Пример 1
  29. Пример 2
  30. 2. Как посчитать проценты, разделив число на 10
  31. Пример
  32. 3. Как посчитать проценты, составив пропорцию
  33. 4. Как посчитать проценты с помощью соотношений
  34. 5. Как посчитать проценты с помощью калькулятора
  35. 6. Как посчитать проценты с помощью онлайн-сервисов
  36. Planetcalc
  37. Калькулятор — справочный портал
  38. Allcalc
  39. Как решать задачи с процентами? Примеры Решений Задач
  40. Типы задач на проценты
  41. Тип 1. Нахождение процента от числа
  42. Тип 2. Нахождение числа по его проценту
  43. Тип 3. Нахождение процентного отношения двух чисел
  44. Тип 4. Увеличение числа на процент
  45. Тип 5. Уменьшение числа на процент
  46. Тип 6. Задачи на простые проценты
  47. Тип 7. Задачи на сложные проценты
  48. Способы нахождения процента
  49. Деление числа на 100
  50. Составление пропорции
  51. Соотношения чисел
  52. Задачи на проценты с решением

Как посчитать долю от общего числа в процентах

Как рассчитать долю от числа

Вышеперечисленный документальный пакет передаётся ответственному специалисту Пенсионного Фонда не позднее, чем за 30 дней до начала выхода на пенсию. за периоды работы с 1999 по 2001 гг. Время пребывания женщины в отпусках по уходу за ребенком до 1,5 лет , если они были до 6 октября 1992 г.

Как рассчитать долю в процентном соотношении?

Логическое простое решение: допустим 1/ 4 доли: единицу берем за 100 процентов делим на 4 = 25 %. Соответственно 1/2 -50 % , 1/3- 30 % и т.д. Посложнее: 2/3 доли — 100 : 3 и умножить на 2= 66 %, 3/ 4 — 100 разделить на 4 умножить на 3 -75 % и т.д.

Доля в процентах

Как известно, доля представляет собой какую-то часть от целого числа.

Рассмотрим на нескольких примерах, как найти долю в процентах.

1) Целое (A) и части от целого (A1, A2, A3. ) выражены в каких-либо единицах (рублях, сантиметрах и др.).

В этом случае посчитать, чему равна доля каждой части, можно по формуле:

Доходы предприятия в 2016 году составили 8 млн рублей. Из них:

5 млн рублей — доходы от основной деятельности.

1 млн рублей — доходы от инвестиционной деятельности.

2 млн рублей — прочие доходы.

Посчитаем, чему равна доля в процентах каждой статьи доходов от общей суммы доходов.

5 / 8 * 100% = 0,625 * 100% = 62,5%. Это доля доходов от основной деятельности.

1 / 8 * 100% = 0,125 * 100% = 12,5%. Это доля доходов от инвестиционной деятельности.

2 / 8 * 100% = 0,250 * 100% = 25%. Это доля доходов от прочей деятельности.

2) Если числовое значение доли от целого уже известно и выражено в виде обыкновенной или десятичной дроби, то достаточно умножить данную дробь на 100%.

Торт разрезали на 4 равные части, соответственно каждый кусок торта представляет собой 1/4 часть от целого.

Расчет процента от числа и доли в Excel

Расчеты с процентами – относятся к одним из самых популярных действий, выполняемых в программе Эксель.

Это может быть умножение числа на определенный процент, определение доли (в %) от конкретного числа и т.д.

Однако, даже если пользователь знает, как выполнить расчеты на листке бумаги, он не всегда может повторить их в программе. Потому сейчас, мы детально разберем, как именно считаются проценты в Эксель.

Считаем долю от общего числа

Для начала разберем довольно распространенную ситуацию, когда нам нужно определить долю одного числа (в процентах) в другом. Ниже приведена математическая формула для выполнения данной задачи:

Доля (%) = Число 1/Число 2*100%, где:

  • Число 1 – собственно говоря, наше исходное числовое значение
  • Число 2 – итоговое число, долю в котором мы хотим выяснить

К примеру, давайте попробуем вычислить, какова доля числа 15 в числе 37. Результат нам нужен в процентах. В данном значение “Числа 1” равно 15, а “Числа 2” – 37.

  1. Выбираем ячейку, где нам нужно произвести расчеты. Пишем знак “равно” (“=”) и далее формулу расчета с нашими числами: =15/37*100% .
  2. После того, как мы набрали формулу, нажимаем клавишу Enter на клавиатуре, и результат сразу же отобразится в выбранной ячейке.

У некоторых пользователей в результирующей ячейке вместо процентного значения может отобразится простое число, причем, иногда с большим количеством цифр после запятой.

Все дело в том, что не настроен формат ячейки для вывода результата. Давайте это исправим:

  1. Кликаем правой кнопкой мыши по ячейке с результатом (неважно, до того, как мы написали в ней формулу и получили результат или после), в появившемся перечне команд щелкаем по пункту “Формат ячеек…”.
  2. В окне форматирования мы окажемся во вкладке “Число”. Здесь в числовых форматах кликаем по строке “Процентный” и в правой части окна указываем желаемое количество знаков после запятой. Наиболее распространенный вариант – “2”, его мы и ставим в нашем примере. После этого жмем кнопку OK.

Кстати, когда формат отображения в ячейке настроен в виде процентов, вовсе не обязательно в формуле писать “*100%“. Достаточно будет выполнить простое деление чисел: =15/37 .

Давайте попробуем применить полученные знания на практике. Допустим, у нас есть таблица с продажами по различным наименованиям, и нам нужно вычислить долю каждого товара в суммарной выручке. Для удобства лучше вывести данные в отдельный столбец. Также, у нас должна быть заранее посчитана итоговая выручка по всем наименованиям, на которую мы будем делить продажи по каждому товару.

Итак, приступим к выполнению поставленной задачи:

    Выбираем первую ячейку столбца (не считая шапку таблицы). Как обычно, написание любой формулы начинается со знака “=“.

    Далее пишем формулу расчета процента, аналогично рассмотренному примеру выше, только заменив конкретные числовые значения адресами ячеек, которые можно прописать вручную, либо добавляем их в формулу кликами мыши.

    В нашем случае, в ячейку E2 нужно написать следующее выражение: =D2/D16 . Примечание: не забываем заранее настроить формат ячеек результирующего столбца, выбрав отображение в виде процентов.

Разумеется, в расчетах вовсе не обязательно заранее считать итоговую выручку и выводить результат в отдельную ячейку. Все можно сразу посчитать с помощью одной формулы, которая для ячейки E2 выглядеть так: =D2/СУММ(D2:D15) .

В данном случае, мы сразу посчитали общую выручку в формуле расчета доли, используя функцию СУММ. О том, как ее применять, читайте в нашей статье – “Как в Экселе посчитать сумму ячеек“.

Как и в первой варианте, нам нужно зафиксировать цифру по итоговым продажам, однако, так как в расчетах не принимает участие отдельная ячейка с нужным значением, нам нужно проставить знаки “$” перед обозначениями строк и столбцов в адресах ячеек диапазона суммы: =D2/СУММ($D$2:$D$15) .

Находим процент от числа

А сейчас давайте попробуем вычислить процент от числу в виде абсолютного значения, т.е. в виде другого числа.

Математическая формула для расчета выглядит следующим образом:

Число 2 = Процент (%) * Число 1, где:

  • Число 1 – исходное число, процент по которому нужно вычислить
  • Процент – соответсвенно, величина самого процента
  • Число 2 – финальное числовое значение, которое требуется получить.

Например, давайте узнаем, какое число составляет 15% от 90.

  1. Выбираем ячейку, в которой будем выводить результат и пишем формулу выше, подставляя в нее наши значения: =15%*90 .Примечание: Так как результат должен быть в абсолютном выражении (т.е. в виде числа), формат ячейки – “общий” или “числовой” (но не “процентный”).
  2. Нажимаем клавишу Enter, чтобы получить результат в выбранной ячейке.

Подобные знания помогают решать множество математических, экономических задач, физических и других задач. Допустим, у нас есть таблица с продажами обуви (в парах) за 1 квартал, и мы планируем в следующем продать на 10% больше. Нужно определить, какому количеству пар для каждого наименования соответствуют эти 10%.

Чтобы выполнить задачу, выполняем следующие шаги:

  1. Для удобства создаем новый столбец, в ячейки которого будем выводить результаты расчетов. Выбираем первую ячейку столбца (на считая шапки) и пишем в ней формулу выше, заменив конкретное значение сходного числа на адрес ячейки: =10%*B2 .
  2. После этого жмем клавишу Enter, и результат сразу же отобразится в ячейке с формулой.
  3. Если мы хотим избавиться от цифр после запятой, так как в нашем случае количество пар обуви может исчисляться только целыми числами, переходим в формат ячейки (как это сделать, мы разобрали выше), где выбираем числовой формат с отсутствием десятичных знаков.
  4. Теперь можно растянуть формулу на оставшиеся ячейки столбца.

В случаях, когда нам нужно получить разные проценты от разных чисел, соответственно, нужно создать отдельный столбец не только для вывода результатов, но и для значений процентов.

  1. Допустим, наша таблица содержит такой столбец “E” (Значение %).
  2. Пишем в первой ячейке результирующего столбца все ту же формулу, только теперь и конкретное значение процента меняем на адрес ячейки с содержащейся в ней процентной величиной: =E2*B2 .
  3. Щелкнув Enter получаем результат в заданной ячейке. Осталось только растянут его на нижние строки.

Заключение

Во время работы с таблицами нередко возникает потребность производить расчеты с процентами. К счастью, функционал программы Эксель позволяет выполнять их с легкостью, причем, если речь идет об однотипных вычислениях в больших таблицах, процесс можно автоматизировать, что позволит сэкономить немало времени.

Калькулятор процентов

Процент — это одна сотая доля числа, принимаемого за целое. Проценты используются для обозначения отношения части к целому, а также для сравнения величин.

Калькулятор процентов позволяет выполнить следующие операции:

Найти процент от числа

Чтобы найти процент p от числа, нужно умножить это число на дробь p 100

Сколько процентов составляет одно число от другого

Чтобы вычислить процентное отношение чисел, нужно одно число разделить на другое и умножить на 100%.

Прибавить проценты к числу

Чтобы прибавить к числу p процентов, нужно умножить это число на (1 + p 100 )

Вычесть проценты из числа

Чтобы отнять от числа p процентов, нужно умножить это число на (1 — p 100 )

На сколько процентов одно число больше другого

Чтобы вычислить, на сколько процентов одно число больше другого, нужно первое число разделить на второе, умножить результат на 100 и вычесть 100.

На сколько процентов одно число меньше другого

Чтобы вычислить, на сколько процентов одно число меньше другого, нужно из 100 вычесть отношение первого числа ко второму, умноженное на 100.

Найти 100 процентов

Если число x это p процентов, то найти 100 процентов можно умножив число x на 100 p

Как посчитать процент от числа

Лучше всего на этот вопрос ответить на конкретном примере. Давайте найдём 23 процента от числа 327. Для этого необходимо 327 умножить на 23 и результат поделить на 100. Получим:

С точки зрения математики, данная задача сводится к пропорции (см. рисунок).

Кнопка для вычисления процентов

Давайте научимся находить процент от числа с помощью калькулятора. Для начала убедитесь, что он способен это делать. Для этого найдите на его клавиатуре кнопку с изображением процента (%).

Найдём сколько составляют 17 процентов от числа 123.

  1. вводим число 123 на калькуляторе;
  2. нажимаем клавишу умножить (Х);
  3. вводим 17;
  4. нажимаем клавишу с изображением символа процента (%);
  5. получаем на экране калькулятора ответ 20,91.

По аналогии можно найти любые другие проценты от любого числа.

Сколько процентов составляет число от числа

Узнаем сколько процентов составляет число 60 от числа 300. Для этого надо 60 умножить на 100 и поделить на 300.

Для нахождения сколько процентов число X составляет от числа Y можно использовать формулу (см. рисунок)

Как посчитать процент от числа и долю в Эксель

Как рассчитать долю от числа

Расчеты с процентами – относятся к одним из самых популярных действий, выполняемых в программе Эксель.

Это может быть умножение числа на определенный процент, определение доли (в %) от конкретного числа и т.д.

Однако, даже если пользователь знает, как выполнить расчеты на листке бумаги, он не всегда может повторить их в программе. Потому сейчас, мы детально разберем, как именно считаются проценты в Эксель.

  • Считаем долю от общего числа
  • Находим процент от числа
  • Заключение

Формула расчета доли

Как рассчитать долю от числа

статьи Загрузка…

Один процент — это одна сотая доля, обозначается знаком %. Само слово процент происходит от латинского «pro centum», что означает «сотая доля».

Проценты — это удобная относительная мера, позволяющая оперировать с числами в привычном для человека формате не зависимо от размера самих чисел.

Это своего рода масштаб, к которому можно привести любое число.

Проценты незаменимы в страховании, финансовой сфере, в экономических расчетах. В процентах выражаются ставки налогов, доходность капиталовложений, плата за заемные денежные средства (например, кредиты банка), темпы роста экономики и многое другое.

1. Формула расчета доли в процентном отношении

Пусть задано два числа: A1 и A2. Надо определить, какую долю в процентном отношении составляет число A1 от A2.

В финансовых расчетах часто пишут

Пример. Какую долю в процентном отношении составляет 10 от 200

P = 10 / 200 * 100 = 5 (процентов).

2. Формула расчета процента от числа

Пусть задано число A2. Надо вычислить число A1, составляющее заданный процент P от A2.

Пример. Банковский кредит 10 000 рублей под 5 процентов. Сумма процентов составит.

P = 10000 * 5 / 100 = 500.

3. Формула увеличения числа на заданный процент. Сумма с НДС

Пусть задано число A1. Надо вычислить число A2, которое больше числа A1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

Пример 1. Банковский кредит 10 000 рублей под 5 процентов. Общая сумма долга составит.

A2= 10000 * (1 + 5 / 100) = 10000 * 1.05 = 10500.

Пример 2. Сумма без НДС равна 1000 рублей, НДС 18 процентов. Сумма с НДС составляет:

A2= 1000 * (1 + 18 / 100) = 1000 * 1.18 = 1180.

4. Формула уменьшения числа на заданный процент

Пусть задано число A1. Надо вычислить число A2, которое меньше числа A1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

Пример. Денежная сумма к выдаче за минусом подоходного налога (13 процентов). Пусть оклад составляет 10 000 рублей. Тогда сумма к выдаче составляет:

A2= 10000 * (1 — 13 / 100) = 10000 * 0.87 = 8700.

5. Формула вычисления исходной суммы. Сумма без НДС

Пусть задано число A1, равное некоторому исходному числу A2 с прибавленным процентом P. Надо вычислить число A2. Иными словами: знаем денежную сумму с НДС, надо вычислить сумму без НДС.

Обозначим p = P / 100, тогда:

Пример. Сумма с НДС равна 1180 рублей, НДС 18 процентов. Стоимость без НДС составляет:

A2= 1180 / (1 + 0.18) = 1000.

6. Расчет процентов на банковский депозит. Формула расчета простых процентов

Если проценты на депозит начисляются один раз в конце срока депозита, то сумма процентов вычисляется по формуле простых процентов.

S = K + (K*P*d/D)/100
Sp = (K*P*d/D)/100

Где: S — сумма банковского депозита с процентами, Sp — сумма процентов (доход), K — первоначальная сумма (капитал), P — годовая процентная ставка, d — количество дней начисления процентов по привлеченному вкладу,

D — количество дней в календарном году (365 или 366).

Пример 1. Банком принят депозит в сумме 100 тыс. рублей сроком на 1 год по ставке 20 процентов.

S = 100000 + 100000*20*365/365/100 = 120000
Sp = 100000 * 20*365/365/100 = 20000

Пример 2. Банком принят депозит в сумме 100 тыс. рублей сроком на 30 дней по ставке 20 процентов.

S = 100000 + 100000*20*30/365/100 = 101643.84
Sp = 100000 * 20*30/365/100 = 1643.84

7. Расчет процентов на банковский депозит при начислении процента на процент. Формула расчета сложных процентов

Если проценты на депозит начисляются несколько раз через равные промежутки времени и зачисляются во вклад, то сумма вклада с процентами вычисляется по формуле сложных процентов.

S = K * ( 1 + P*d/D/100 ) N

Где: S — сумма депозита с процентами, К — сумма депозита (капитал), P — годовая процентная ставка,

N — число периодов начисления процентов.

При расчете сложных процентов проще вычислить общую сумму с процентами, а потом вычислить сумму процентов (доход):

Sp = S — K = K * ( 1 + P*d/D/100 ) N — K

Sp = K * (( 1 + P*d/D/100 ) N — 1)

Пример 1. Принят депозит в сумме 100 тыс. рублей сроком на 90 дней по ставке 20 процентов годовых с начислением процентов каждые 30 дней.

S = 100000 * (1 + 20*30/365/100) 3 = 105 013.02
Sp = 100000 * ((1 + 20*30/365/100) N — 1) = 5 013.02

Пример 2. Проверим формулу начисления сложных процентов для случая из предыдущего примера.

Разобьем срок депозита на 3 периода и рассчитаем начисление процентов для каждого периода, использую формулу простых процентов.

S1 = 100000 + 100000*20*30/365/100 = 101643.84
Sp1 = 100000 * 20*30/365/100 = 1643.84

S2 = 101643.84 + 101643.84*20*30/365/100 = 103314.70
Sp2 = 101643.84 * 20*30/365/100 = 1670.86

S3 = 103314.70 + 103314.70*20*30/365/100 = 105013.02
Sp3 = 103314.70 * 20*30/365/100 = 1698.32

Общая сумма процентов с учетом начисления процентов на проценты (сложные проценты)

Таким образом, формула вычисления сложных процентов верна.

8. Еще одна формула сложных процентов

Если процентная ставка дана не в годовом исчислении, а непосредственно для периода начисления, то формула сложных процентов выглядит так.

S = K * ( 1 + P/100 ) N

Где: S — сумма депозита с процентами, К — сумма депозита (капитал), P — процентная ставка,

N — число периодов начисления процентов.

Пример. Принят депозит в сумме 100 тыс. рублей сроком на 3 месяца с ежемесячным начислением процентов по ставке 1.5 процента в месяц.

6 способов посчитать проценты от суммы с калькулятором и без – Лайфхакер

Как рассчитать долю от числа

Так вы найдёте числовой эквивалент 1%. Дальше всё зависит от вашей цели. Чтобы посчитать проценты от суммы, умножьте их на размер 1%. Чтобы перевести число в проценты, разделите его на размер 1%.

Пример 1

Вы заходите в супермаркет и видите акцию на кофе. Его обычная цена — 458 рублей, сейчас действует скидка 7%. Но у вас есть карта магазина, и по ней пачка обойдётся в 417 рублей.

Чтобы понять, какой вариант выгоднее, надо перевести 7% в рубли.

Разделите 458 на 100. Для этого нужно просто сместить запятую, отделяющую целую часть числа от дробной, на две позиции влево. 1% равен 4,58 рубля.

Умножьте 4,58 на 7, и вы получите 32,06 рубля.

Теперь остаётся отнять от обычной цены 32,06 рубля. По акции кофе обойдётся в 425,94 рубля. Значит, выгоднее купить его по карте.

Пример 2

Вы видите, что игра в Steam стоит 1 000 рублей, хотя раньше продавалась за 1 500 рублей. Вам интересно, сколько процентов составила скидка.

Разделите 1 500 на 100. Сместив запятую на две позиции влево, вы получите 15. Это 1% от старой цены.

Теперь новую цену разделите на размер 1%. 1 000 / 15 = 66,6666%.

100% – 66,6666% = 33,3333%.Такую скидку предоставил магазин.

2. Как посчитать проценты, разделив число на 10

Этот способ похож на предыдущий, но считать с его помощью гораздо быстрее. Но только если речь идёт о процентах, кратных пяти.

Сначала вы находите размер 10%, а потом делите или умножаете его, чтобы получить нужное количество процентов.

Пример

Допустим, вы кладёте на депозит 530 тысяч рублей на 12 месяцев. Процентная ставка составляет 5%, капитализации не предусмотрено. Вы хотите узнать, сколько денег заберёте через год.

В первую очередь надо вычислить 10% от суммы. Разделите её на 10, передвинув запятую влево на один знак. Вы получите 53 тысячи.

Чтобы узнать, сколько составляют 5%, разделите результат на 2. Это 26,5 тысячи.

Если бы в примере речь шла о 30%, нужно было бы умножить 53 на 3. Для расчёта 25% пришлось бы умножить 53 на 2 и прибавить 26,5.

В любом случае такими крупными числами оперировать довольно просто.

3. Как посчитать проценты, составив пропорцию

Составлять пропорции — одно из наиболее полезных умений, которому вас научили в школе. С его помощью можно посчитать любые проценты. Выглядит пропорция так:

сумма, составляющая 100% : 100% = часть суммы : доля в процентном соотношении.

Или можно записать её так: a : b = c : d.

Обычно пропорция читается как «а относится к b так же, как с относится к d». Произведение крайних членов пропорции равно произведению её средних членов. Чтобы узнать неизвестное число из этого равенства, нужно решить простейшее уравнение.

4. Как посчитать проценты с помощью соотношений

В некоторых случаях можно воспользоваться простыми дробями. Например, 10% — это 1/10 числа. И чтобы узнать, сколько это будет в цифрах, достаточно разделить целое на 10.

  • 20% — 1/5, то есть нужно делить число на 5;
  • 25% — 1/4;
  • 50% — 1/2;
  • 12,5% — 1/8;
  • 75% — это 3/4. Значит, придётся разделить число на 4 и умножить на 3.

5. Как посчитать проценты с помощью калькулятора

Если без калькулятора вам жизнь не мила, все вычисления можно делать с его помощью. А можно поступить ещё проще.

  • Чтобы посчитать проценты от суммы, введите число, равное 100%, знак умножения, затем нужный процент и знак %. Для примера с кофе вычисления будут выглядеть так: 458 × 7%.
  • Чтобы узнать сумму за вычетом процентов, введите число, равное 100%, минус, размер процентной доли и знак %: 458 – 7%.
  • Аналогично можно складывать, как в примере с депозитом: 530 000 + 5%.

6. Как посчитать проценты с помощью онлайн-сервисов

Не все проценты можно посчитать в уме и даже на калькуляторе. Если речь идёт о доходности вклада, переплатах по ипотеке или налогах, требуются сложные формулы. Они учтены в некоторых онлайн-сервисах.

Planetcalc

На сайте собраны разные калькуляторы, которые высчитывают не только проценты. Здесь есть сервисы для кредиторов, инвесторов, предпринимателей и всех тех, кто не любит считать в уме.

Planetcalc→

Калькулятор — справочный портал

Ещё один сервис с калькуляторами на любой вкус.

Калькулятор — справочный портал→

Allcalc

Каталог онлайн-калькуляторов, 60 из которых предназначены для подсчёта финансов. Можно вычислить налоги и пени, размер субсидии на ЖКУ и многое другое.

Как решать задачи с процентами? Примеры Решений Задач

Как рассчитать долю от числа

Когда мы сравниваем разные части целого, мы используем такие понятия, как половина (1/2), треть (1/3), четверть (1/4). Это удобно: отрезать половину пирога, пройти треть пути, закончить первую четверть в школе.

Чтобы сравнивать сотые доли, придумали процент (1/100): с латинского языка — «за сто».

Процент — это одна сотая часть от любого числа. Обозначается вот так: %.

Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить число на 100, как в примере выше.

А если нужно перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Например:

  • 0,18 = 0,18 · 100% = 18%.

А вот, как перевести проценты в десятичную дробь — обратным действием:

Выразить дробь в процентах просто. Для перевода сначала превратим её в десятичную дробь, а потом используем предыдущее правило:

В детской школе Skysmart ученикам помогает считать проценты веселый енот Макс. Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. А еще развивающие игры, квесты и головоломки на любой возраст и уровень.

Типы задач на проценты

В 5, 6, 7, 8, 9 классах в задачках по математике на проценты сравнивают части одного целого, определяют долю части от целого, ищут целое по части. Давайте рассмотрим все виды задач на проценты.

Тип 1. Нахождение процента от числа

Чтобы найти процент от числа, нужно число умножить на процент.

Задача. За месяц на заводе изготовили 500 стульев. 20% изготовленных стульев не прошли контроль качества. Сколько стульев не прошло контроль качества?

Как решаем: нужно найти 20% от общего количества изготовленных стульев (500).

20% = 0,2

500 * 0,2 = 100

Из общего количества изготовленных стульев контроль не прошли 100 штук.

Тип 2. Нахождение числа по его проценту

Чтобы найти число по его проценту, нужно его известную часть разделить на то, сколько процентов она составляет от числа.

Задачи по поиску процента по числу и числа по его проценту очень похожи. Чтобы не перепутать — внимательно читаем условия, иначе зайдем в тупик или решим неправильно. Если в задании есть слова «который», «что составляет» и «который составляет» — перед нами задача по нахождению числа по его проценту.

Задача. Школьник решил 38 задач из учебника. Что составляет 16% числа всех задач в книге. Сколько всего задач собрано в этом учебнике?

Как решаем: мы не знаем, сколько всего задач в учебнике. Но нам известно, что 38 задач составляют 16% от общего количества. Запишем 16% в виде дроби: 0,16. Далее известную нам часть целого разделим на ту долю, которую она составляет от всего целого.

38/0,16 = 38 * 100/16 = 237,5

Значит 237 задачи включили в этот сборник.

Тип 3. Нахождение процентного отношения двух чисел

Чтобы найти, сколько процентов одно число составляет от другого, нужно ту часть, о которой спрашивается, разделить на общее количество и умножить на 100%.

Задача. В классе учится 25 человек. 10 из них — девочки. Сколько процентов девочек в классе?

Как решаем: возьмем алгоритм из правила выше:

10/25 * 100% = 2/5 * 100% = 2 * 100/5 = 40%

В классе учится 10 девочек — это 40%.

Тип 4. Увеличение числа на процент

Чтобы увеличить число на некоторое количество процентов, нужно найти число, которое выражает нужное количество процентов от данного числа, и сложить его с данным числом.

Формула расчета процента от числа выглядит так:

a = b * ((1 + c) / 100),

где a — число, которое нужно найти,

b — первоначальное значение,

c — проценты.

Задача. В прошлом месяце стикер-пак стоил 110 рублей. А в этом месяце на 12% больше. Сколько стоит стикер-пак?

Как решаем: подставим в формулу данные из условий задачи.

110 * (1 + 12/100) = 110 * 1,12 = 123,2.

Стоимость стикер-пака в этом месяце — 123 рубля 20 копеек.

Тип 5. Уменьшение числа на процент

Чтобы уменьшить число на несколько процентов, нужно найти число, которое выражает нужное количество процентов данного числа, и вычесть его от данного числа.

Формула расчета выглядит так:

a = b * ((1 – c) / 100),

где a — число, которое нужно найти,

b — первоначальное значение,

c — проценты.

Задача. В прошлом году школу закончили 100 ребят. А в это году выпускников на 25 меньше. Сколько выпускников в этом году?

Как решаем: подставим в формулу данные из условий задачи.

100 * (1 – 25/100) = 75

75 выпускников закончат школу в этом году.

Тип 6. Задачи на простые проценты

Простые проценты — метод расчета процентов, при котором начисления происходят на первоначальную сумму вклада или долга.

Формула расчета выглядит так:

S = а * ((1 + у * х)/ 100),

где a — исходная сумма,

S — сумма, которая наращивается,

x — процентная ставка,

y — количество периодов начисления процента.

Задача. Родители взяли в банке кредит 5000 рублей, чтобы купить тебе что-то классное. Кредит на год под 15% ежемесячно. Сколько денег они внесут через год?

Как решаем: подставим в формулу данные из условий задачи.

5000 * (1 + 12 * 15/100) = 14000

Родители через год внесут в банк 14000 рублей.

Тип 7. Задачи на сложные проценты

Сложные проценты — это метод расчета процентов, когда проценты прибыли прибавляют к сумме на остатке каждый месяц. В следующий раз проценты начисляют на эту новую сумму.

Формула расчета выглядит так:

S = а * ((1 + х)/100)y,

где S — наращиваемая сумма,

a — исходная,

x — процентная ставка,

y — количество периодов начисления процента.

Задача. Папа взял в банке кредит 25000 рублей на 3 месяца под 15%. Нам нужно узнать, сколько денег придется заплатить банку по истечении срока кредита.

Как решаем: просто подставим в формулу данные из условий задачи:

25000 * (1 + 15/100)3 = 38021,875 — искомая сумма.

Способы нахождения процента

Универсальная формула для решения задач на проценты:

A * b = C, где A — исходное число, b — проценты, переведенные в десятичную дробь,

C — новое число.

Чтобы применить алгоритм, нужно прочитать задачу, отметить, какие два числа нам известны и найти третье.

Есть еще четыре способа поиска процентов. Рассмотрим каждый из них.

Деление числа на 100

При делении на 100 получается 1% от этого числа. Это правило можно использовать по-разному. Например, чтобы узнать процент от суммы, нужно умножить их на размер 1%. А чтобы перевести известное значение, следует разделить его на размер 1%. Этот метод отлично помогает в вопросе, как перевести целое число в проценты.

Представьте, что вы пришли в магазин за шоколадом. Обычно он стоит 250 рублей, но сегодня скидка 15%. Если у вас есть дисконтная карта магазина, шоколад обойдется вам в 225 рублей. Чем будет выгоднее воспользоваться: скидкой или картой?

Как решаем:
  1. Переведем 15% в рубли: 250 : 100 = 2,5 — это 1% от стоимости шоколада,

    значит 2,5 * 15 = 37,5 — это 15%.

  2. 250 – 37,5 = 212,5.
  3. 212,5 < 225.

Ответ: выгоднее воспользоваться скидкой 15%.

Составление пропорции

Пропорция — определенное соотношение частей между собой.

С помощью метода пропорции можно рассчитать любые %. Выглядит это так:

Читается: a относится к b так, как с относится к d. Также важно помнить, что произведение крайних членов равно произведению средних. Чтобы узнать неизвестное из этого равенства, нужно решить простейшее уравнение.

Рассмотрим пример. На сколько выгодно покупать спортивную футболку за 1390 рублей при условии, что в магазине в честь дня всех влюбленных действует скидка 14%?

Как решаем:
  1. Узнаем сколько стоит футболка сейчас в % соотношении: 100 – 14 = 86,

    значит 1390 рублей это 86%.

  2. Составим пропорцию: 1390 : 100 = х : 86, х = 86 * (1390 : 100),

    х = 1195,4.

  3. 1390 – 1195,4 = 194,6.

Ответ: купить спортивную футболку выгоднее на 194,6 рубля.

Соотношения чисел

Есть случаи, при которых можно использовать простые дроби.

  • 10% — десятая часть целого. Чтобы найти десять %, понадобится известное разделить на 10.
  • 20% — пятая часть целого. Чтобы вычислить двадцать % от известного, его нужно разделить на 5.
  • 25% — четверть целого. Чтобы вычислить двадцать пять %, понадобится известное разделить на 4.
  • 50% — половина целого. Чтобы вычислить половину, нужно известное разделить на 2.
  • 75% — три четверти целого. Чтобы вычислить семьдесят пять %, нужно известное значение разделить на 4 и умножить на 3.

Задача для тренировки. В черную пятницу вы нашли отличный пиджак со скидкой 25%. В обычный день он стоит 8500 рублей, но сейчас с собой есть только 6400 рублей. Хватит ли средств для покупки?

Как решаем:
  1. 100 – 25 = 75,
    значит нужно заплатить 75% от первоначальной цены.
  2. Используем правило соотношения чисел:
    8500 : 4 * 3 = 6375.

Ответ: средств хватит, так как пиджак стоит 6375 рублей.

Задачи на проценты с решением

Как мы уже убедились, решать задачи на проценты совсем несложно. Для закрепления материала рассмотрим реальные примеры на проценты из учебников и несколько заданий для подготовки к ЕГЭ.

Задача 1. Организм взрослого человека на 70% состоит из воды. Какова масса воды в теле человека, который весит 76 кг?

Как решаем:

76 : 100 = 0,76 — 1% от массы человека

0,76 * 70 = 53,2

Ответ: масса воды 53,2 кг

Задача 2. Цена товара понизилась на 40%, затем еще на 25%. На сколько процентов понизилась цена товара по сравнению с первоначальной ценой?

Как решаем:

Обозначим первоначальную цену товара через х. После первого понижения цена станет равной.

х – 0,4х = 0,6x

Второе понижение цены составляет 25% от новой цены 0,6х, поэтому после второго понижения получим:

0,6х – 0,25 * 0,6x = 0,45x

После двух понижений изменение цены составит:

х – 0,45x = 0,55х

Так как величина 0,55x составляет 55% от величины x, то цена товара понизилась на 55%.

Ответ: 55%.

Задача 3. Четыре пары брюк дешевле одного пальто на 8%. На сколько процентов пять пар брюк стоят дороже, чем одно пальто?

Как решаем:

По условиям задачи стоимость четырех пар брюк — это 92% от стоимости пальто

100 – 8 = 92

Получается, что стоимость одной пары брюк — это 23% стоимости пальто.

92 : 4 = 23

Теперь умножим стоимость одной пары брюк на пять и узнаем, что пять пар брюк обойдутся в 115% стоимости пальто.

23 * 5 = 115

Ответ: пять пар брюк на 15% дороже, чем одно пальто.

Задача 4. Семья состоит из трех человек: муж, жена и дочь-студентка. Если зарплата мужа вырастет в два раза, общий доход семьи возрастет на 67%. Если дочери в три раза урежут стипендию, общий доход этой семьи уменьшится на 4%. Вычислить, какой процент в общий доход семьи приносит заработок жены.

Как решаем:

По условиям задачи общий доход семьи напрямую зависит от доходов мужа. Благодаря увеличению зарплаты общий доход семьи вырастет на 67%. Значит, зарплата мужа составляет как раз 67% от общего дохода.

https://www.youtube.com/watch?v=XPbXkHkmNII

Если стипендия дочери уменьшится в три раза (т.е. на 1/3), останется 2/3 — это и есть 4%, на которые уменьшился бы семейных доход.

Можно составить простую пропорцию и выяснить, что раз 2/3 стипендии — это 4% дохода, то вся стипендия — это 6%.

А теперь отнимем от всего дохода вклад мужа и дочери и узнаем, какой процент составляет заработок жены в общем доходе семьи: 100 – 67 – 6 = 27.

Ответ: заработок жены составляет 27%.

Задача 5. В свежих абрикосах 90% влаги, а в сухофрукте кураге только 5%. Сколько килограммов абрикосов нужно, чтобы получить 20 килограммов кураги?

Как решаем:

Исходя из условия, в абрикосах 10% питательного вещества, а в кураге в концентрированном виде — 95%.

Поэтому в 20 килограммах кураги 20 * 0,95 = 19 кг питательного вещества.

На вопрос задачи мы ответим, если разделим одинаковое количество питательного вещества, которое содержится в разных объемах свежих абрикосов и кураги, на его процентное содержание в абрикосах.

19 : 0,1 = 190

Ответ: 190 кг свежих абрикосов потребуется для изготовления 20 кг кураги.

О правах человека и предпринимательства
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: